
个人简介
贺平安,男,1969.11.07,博士,教授,硕士生导师,浙江省高校中青年学科带头人,浙江省数学会常务理事,浙江省高等学校大学数学课程教学指导委员会副主任委员,浙江省生物信息学学会副理事长、常务理事,中国仿真学会青年工作委员会委员。
移动电话:15988479536,E_Mail:pinganhe@zstu.edu.cn。
学习和工作经历:
1987.09-1993.08河南省宜阳县柳泉中学任教;
1993.09-1995.07河南教育学院数学系数学教育专业学习,大学本科;
1995.08-1998.08河南省宜阳县第二高级中学任教;
1998.09-2003.06大连理工大学应用数学系硕博连读,获理学博士学位;
2003.07-2005.06复旦大学理论生命科学研究中心,博士后;
2005.07-至今 浙江理工大学理学院数学科学系教师,2011.12晋升教授。
其中:
2018.09-2019.09美国佐治亚大学,访问学者;
2012.07-2012.08中国科学院国家数学与交叉科学中心,访问学者;
2010.09-2011.09美国休斯敦大学,访问学者;
2010.02-2010.07上海外国语大学,青年骨干教师出国留学人员培训班学习;
2009.07-2009.08中国科学院科学与工程计算国家重点实验室,访问学者。
研究方向:
计算生物学,生物信息学,组合数学。
所获奖励及荣誉:
1.2018年“蛋白序列信息定量描述模型理论方法研究”获浙江省自然科学奖三等奖;
2.2013年入选浙江省高校中青年学科带头人;
3.2013年入选浙江省“钱江人才”项目;
4.2012年入选浙江理工大学“521”中青年骨干人才;
5.2012年论文“The Graphical Representation of Protein Sequences Based on the Physicochemical Properties and its Applications”获浙江省自然科学基金优秀论文奖;
6.2010年“数学方法在生物序列分析中的应用” 项目获浙江省高校科研成果二等奖,排名第二。
学术兼职:
1.2022年被聘为浙江省大学数学教学指导委员会副主任委员;
2.2018年当选为浙江省数学会常务理事;
3.2013、2017年当选为浙江省生物信息学学会副理事长、常务理事;
4.2007、2011、2015、2019年当选为中国系统仿真学会青年工作委员会委员;
5.第8-15届系统生物学国际会议(ISB 2104-2021)程序委员会委员。
教学工作及成果:
1.本科生课程:线性代数、高等数学、生物信息学、数学学科前沿导论。
2.研究生课程:矩阵论、组合数学、图论、生物统计学。
3.指导硕士研究生16人,其中已毕业12人。已毕业的研究生中获国家研究生奖学金一项,浙江理工大学优秀毕业生2人,5人的硕士论文获校优秀毕业论文。2014年任数学一级学科研究生培养委员会副主任,数学一级学科硕士点负责人。
科研项目:
(一)国家自然科学基金面上项目4项,主持完成两项,参与完成两项(均排名第二)。
1.基于血清蛋白组表达谱分析模型的癌症分期预测研究,2018.01-2021.12,主持。项目批准号:61772027;
2.基于蛋白序列图形表示的膜蛋白结构与功能预测研究,2012.01-2015.12,主持。项目批准号:61170110;
3.基于多源信息融合的蛋白质亚细胞定位预测算法研究,2013.01-2016.12,参与,排名第二。项目批准号:61272312;
4.基于距离的分子系统发育分析方法研究,2012.01-2015.12,参与,排名第二。项目批准号:11171042。
(二)浙江省自然科学基金7项,主持两项,参与五项。
1. 肿瘤蛋白组表达谱分析的数学模型及其应用研究,2014.01-2016.12,主持。项目批准号:LY14F020049,已结题;
2. 药物相关膜蛋白分析预测的若干数学方法,2010-01-2011.12,主持。项目批准号:Y6090261,已结题;
3.生物序列和模型聚类与可靠性分析的几何造型相关问题研究,2020.01-2022.12,参与,排名第二。项目批准号:Z19A010006,在研;
4.基于深度学习和多组学数据整合的肿瘤精准分型算法研究,2019.01-2021.12,参与,排名第二。项目批准号:Y18F020107,已结题;
5. 肿瘤蛋白质组信息分析模型及应用算法研究,2012.01-2013.12,参与,排名第二。项目批准号:LY12F02043,已结题;
6. 肿瘤蛋白质组信息分析的离散特征方法及其应用研究,2011.01-2012.12,参与,排名第三。项目批准号:Y1110752,已结题;
7. 恶性肿瘤相关基因蛋白序列的数学描述及其应用,2008.01-2010.12,参与,排名第二。项目批准号:Y607510,已结题。
(三)其他科研项目
1. 基于血清蛋白组表达谱分析模型的早期肿瘤诊断技术研究,2013.01-2015.06,浙江省钱江人才项目,主持。项目批准号:2013R10061;
2. 恶性肿瘤患者血清蛋白组表达谱分析的数学模型,2013.09-2015.09,浙江省中青年学科带头人攀登计划,主持。项目批准号:浙教办高科[2013]97号。
科研论著
已发表学术论文64篇,其中SCI收录54篇,教材2本。
(一)2015年以来发表的论文:(带*号为通讯作者)
[1]CancanLi, QiDai, He,Ping-an He*,A time series representation of protein sequences for similarity comparison,Journal of Theoretical Biology, 2022, 538:111039.
[2]LiugenWang, MinShang, QiDai,Ping-anHe*,Prediction of lncRNA-disease association based on a Laplace normalized random walk with restart algorithm on heterogeneous networks,BMC Bioinformatics, 2022, 23(1).
[3]JiaheHuang, QiDai,YuhuaYao,Ping-an He*,A Generalized Iterative Map for Analysis of Protein Sequences,Comb Chem High Throughput Screen,2022, 25(3): 381-391.
[4]TianyuZhu, QiDai,Ping-an He*,Identification of Potential Immune-related Biomarkers in Gastrointestinal Cancers,Current Bioinformatics,2021, 16(9): 1203-1213.
[5]XinnanXu,RuiKong,XiaoqingLiu,Ping-an He,QiDai*, Prediction of High-Risk Types of Human Papillomaviruses Using Reduced Amino Acid Modes,Computational and Mathematical Methods in Medicine,2020, 2020:5325304.
[6]RuiKong,XinnanXu, XiaoqingLiu,Ping-an He,Michael QZhang, QiDai*, 2SigFinder: The combined use of small-scale and large-scale statistical testing for genomic island detection from a single genome,BMC Bioinformatics,2020, 21(1):159.
[7]Shuang Qiu, Zheng An, Renbo Tan,Ping-an He,Jingjing Jing, Hongxia Li, Shuang Wu, Ying Xu*, Understanding the unimodal distributions of cancer occurrence rates: it takes two factors for a cancer to occur,Briefings in Bioinformatics,2020, 22(4): 1-11.
[8]Ping-an He*,LinlinYan,TianyuZhu, A Graphical Representation of Protein Sequences and Its Applications, 4th International Conference on Biological Information and Biomedical Engineering, BIBE 2020, Chengdu, China , 2020-7-21至2020-7-23.
[9]Ping-an He*,LongaoHou, HongTao, QiDai,YuhuaYao, An Analysis Model of Protein Mass Spectrometry Data and Its Application,Current Bioinformatics,2020, 15(9): 1010-1016.
[10]BaohangXi,JinTao, Xiaoqing Liu,XinnanXu,Ping-an He,QiDai*,RaaMLab: A MATLAB toolbox that generates amino acid groups and reduced amino acid modes,Biosystems,2019, 180: 38-45.
[11]JinTao, XiaoqingLiu, SiqianYang, ChaohuiBao,Ping-an He, QiDai*, An efficient genomic signature ranking method for genomic island prediction from a single genome,Journal of Theoretical Biology, 2019, 467: 142-149.
[12]YuhuaYao*, ManzhiLi, HuiminXu, ShoujiangYan,Ping-an He,Qi Dai,ZhaohuiQi, Bo Liao, Protein Subcellular Localization Prediction Based on PSI-BLAST Profile and Principal Component Analysis,Current Proteomics,2019, 16(5): 402-414.
[13]YuhuaYao, Xianhong Li, Bo Liao, Li Huang,Ping-an He, Fayou Wang, Jiasheng Yang, Hailiang Sun, Yulong Zhao, Jialiang Yang*, Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method,Scientific Reports,2017, 7(1): 1545.
[14]Tai-HeFan*, ShuhaoSun,Ping-AnHe, The time required for allele frequency change,Anziam Journal,2017, 58(3-4): 464-473.
[15]Qi Dai,LiliGeng,Minjia Lu, WeiboJin,XuyingNan,Ping-anHe,YuhuaYao*, Comparative transcriptome analysis of the different tissues between the cultivated and wild tomato,PLos One, 2017, 12(3): 0-e0172411.
[16]LiHuang, XianhongLi, PengfeiGuo, YuhuaYao, Bo Liao, WeiweiZhang, FayouWang, JiashengYang, YulongZhao, HailiangSun,Ping-an He*, JialiangYang*, Matrix completion with side information and its applications in predicting the antigenicity of influenza virusesBioinformatics, 2017, 33(20): 3195-3201.
[17]Ping-anHe*,HongTao,TingtingMa, QiDai,Yuhua Yao, A Novel Protein Characterization Based on Pseudo Amino Acids Composition and Star-Like Graph Topological Indices,Combinatorial Chemistry & High Throughput Screening, 2017, 20(4): 328-337.
[18]Ping-an He*, Suning Xu,QiDai, Yuhua Yao,A generalization ofCGR representation for analyzing and comparing protein sequences,InternationalJournal of Quantum Chemistry,2016,116(6):476-482.
[19]Jing Chen,Huimin Xu,Ping-an He,Qi Dai,Yuhua Yao*,A multipleinformation fusion method for predicting subcellular locations of two differenttypes of bacterial protein simultaneously,Biosystems,2016,139:37-45.
[20]Ping-an He*, Daoli Yu,Tingting Ma,Zhixin Tie,PhylogeneticAnalysis of HA Protein of Influenza A Virus Based on a Novel Alignment-FreeMethod,Match-Communications in Mathematical and in ComputerChemistry,2015,74(3):591-606.
[21]Yuhua Yao*,Huimin Xu,Pingan He,Qi Dai,Recent Advances onPrediction of Protein Subcellular Localization,Mini-Reviews in OrganicChemistry,2015,12:481-492.
[22]Huimin Xu,Shoujiang Yan,Qi Dai,Ping-an He,Bo Liao,Yuhua Yao*,Protein Subcellular Location Prediction Based on Pseudo Amino AcidComposition and PSI-Blast Profile,Journal of Computational and TheoreticalNanoscience,2015,12:1-7.
[23]Hong Yang,Hui-min Xu,Fen Kong,Qi Dai,Ping-an He,Yu-hua Yao*,A New Method for the Similarity Analysis of Proteins,Journal of Computationaland Theoretical Nanoscience,2015,12(10):1-6.
[24]Chun Li*, Yan Yang, WenchaoFei,Ping-an He, Xiaoqing Yu, Defu Zhang, ShuminYi, Xuepeng Li, Jin Zhu, Changzhong Wang, Zhifu Wang, Prediction of success for polymerase chain reactions using the Markov maximal order model and support vector machine,Journal of Theoretical Biology,2015, 369: 51-58.
[25]Yan-ping Zhang*, Ya-jun Sheng, Wei Zheng,Ping-an He, Ji-shuoRuan, Novel Numerical Characterization of Protein Sequences Based on Individual Amino Acid and Its Application,Biomed Research International,2015, ID 909567: 1-8.